Utilizing DeepSqueak for automatic detection and classification of mammalian vocalizations: a case study on primate vocalizations | Scientific Reports - Nature.com

DOWNLOAD LINK GATHER AT THE END OF THIS CONTENT
1.

Priyadarshani, N., Marsland, S. & Castro, I. Automated birdsong recognition in complex acoustic environments: A review. J. Avian Biol. 49, e01447. https://doi.org/10.1111/jav.01447[1] (2018).

Article[2]  Google Scholar[3] 

2.

Barker, D. J. & Johnson, A. M. Automated acoustic analysis of 50-kHz ultrasonic vocalizations using template matching and contour analysis. J. Acoust. Soc. Am. 141, EL281–EL286. https://doi.org/10.1121/1.4977990[4] (2017).

Article[5]  PubMed[6]  PubMed Central[7]  ADS[8]  Google Scholar[9] 

3.

Oswald, J. N., Rankin, S., Barlow, J. & Lammers, M. O. A tool for real-time acoustic species identification of delphinid whistles. J. Acoust. Soc. Am. 122, 587–595. https://doi.org/10.1121/1.2743157[10] (2007).

Article[11]  PubMed[12]  ADS[13]  Google Scholar[14] 

4.

Van Segbroeck, M., Knoll, A. T., Levitt, P. & Narayanan, S. MUPET—Mouse Ultrasonic Profile ExTraction: A signal processing tool for rapid and unsupervised analysis of ultrasonic vocalizations. Neuron 94, 465-485.e465. https://doi.org/10.1016/j.neuron.2017.04.005[15] (2017).

CAS[16]  Article[17]  PubMed[18]  PubMed Central[19]  Google Scholar[20] 

5.

Binder, M. S., Hernandez-Zegada, C. J., Potter, C. T., Nolan, S. O. & Lugo, J. N. A comparison of the Avisoft (5.2) and Ultravox (2.0) recording systems: Implications for early-life communication and vocalization research. J. Neurosci. Methods 309, 6–12. https://doi.org/10.1016/j.jneumeth.2018.08.015[21] (2018).

Article[22]  PubMed[23]  Google Scholar[24] 

6.

Mcloughlin, M. P., Stewart, R. & McElligott, A. G. Automated bioacoustics: Methods in ecology and conservation and their potential for animal welfare monitoring. J. R. Soc. Interface 16, 20190225. https://doi.org/10.1098/rsif.2019.0225[25] (2019).

Article[26]  PubMed[27]  PubMed Central[28]  Google Scholar[29] 

7.

Castellote, M. & Fossa, F. Measuring acoustic activity as a method to evaluate welfare in captive beluga whales (Delphinapterus leucas). Aquat. Mamm. 32, 325–333. https://doi.org/10.1578/AM.32.3.2006.325[30] (2006).

Article[31]  Google Scholar[32] 

8.

Clapham, W. M., Fedders, J. M., Beeman, K. & Neel, J. P. S. Acoustic monitoring system to quantify ingestive behavior of free-grazing cattle. Comput. Electron. Agric. 76, 96–104. https://doi.org/10.1016/j.compag.2011.01.009[33] (2011).

Article[34]  Google Scholar[35] 

9.

Schön, P. C. et al. Altered vocalization rate during the estrous cycle in dairy cattle. J. Dairy Sci. 90, 202–206. https://doi.org/10.3168/jds.S0022-0302(07)72621-8[36] (2007).

Article[37]  PubMed[38]  Google Scholar[39] 

10.

Cascão, I., Lammers, M. O., Prieto, R., Santos, R. S. & Silva, M. A. Temporal patterns in acoustic presence and foraging activity of oceanic dolphins at seamounts in the Azores. Sci. Rep. 10, 3610. https://doi.org/10.1038/s41598-020-60441-4[40] (2020).

CAS[41]  Article[42]  PubMed[43]  PubMed Central[44]  ADS[45]  Google Scholar[46] 

11.

Manteuffel, G. R. & Schön, P. C. STREMODO, an innovative technique for continuous stress assessment of pigs in housing and transport. Arch. Tierzucht. 47, 173–181 (2004).

Google Scholar[47] 

12.

Chedad, A. et al. Recognition system for pig cough based on probabilistic neural networks. J. Agric. Eng. Res. 79, 449–457. https://doi.org/10.1006/jaer.2001.0719[48] (2001).

Article[49]  Google Scholar[50] 

13.

Bardeli, R. et al. Detecting bird sounds in a complex acoustic environment and application to bioacoustic monitoring. Pattern Recogn. Lett. 31, 1524–1534. https://doi.org/10.1016/j.patrec.2009.09.014[51] (2010).

Article[52]  ADS[53]  Google Scholar[54] 

14.

Jones, K. E. et al. In Biodiversity Monitoring and Conservation: Bridging the Gap Between Global Commitment and Local Action (eds Collen, B., et al.) Ch. 10, (Taylor & Francis, 2013).

15.

Marques, T. A. et al. Estimating animal population density using passive acoustics. Biol. Rev. 88, 287–309. https://doi.org/10.1111/brv.12001[55] (2013).

Article[56]  PubMed[57]  Google Scholar[58] 

16.

Stevenson, B. C. et al. A general framework for animal density estimation from acoustic detections across a fixed microphone array. Methods Ecol. Evol. 6, 38–48. https://doi.org/10.1111/2041-210x.12291[59] (2015).

Article[60]  Google Scholar[61] 

17.

Wrege, P. H., Rowland, E. D., Keen, S. & Shiu, Y. Acoustic monitoring for conservation in tropical forests: Examples from forest elephants. Methods Ecol. Evol. 8, 1292–1301. https://doi.org/10.1111/2041-210x.12730[62] (2017).

Article[63]  Google Scholar[64] 

18.

Haver, S. M. et al. Comparing the underwater soundscapes of four U.S. national parks and marine sanctuaries. Front. Mar. Sci. 6, 500. https://doi.org/10.3389/fmars.2019.00500[65] (2019).

Article[66]  Google Scholar[67] 

19.

Beason, R. D., Riesch, R. & Koricheva, J. AURITA: An affordable, autonomous recording device for acoustic monitoring of audible and ultrasonic frequencies. Bioacoustics 28, 381–396. https://doi.org/10.1080/09524622.2018.1463293[68] (2019).

Article[69]  Google Scholar[70] 

20.

Beeman, K. H., Hopp, S. L., Owren, M. J. & Evans, C. S. E. Animal Acoustic Communication: Sound Analysis and Research Methods (Springer, 1998).

Google Scholar[71] 

21.

Janik, V. M. Pitfalls in the categorization of behaviour: A comparison of dolphin whistle classification methods. Anim. Behav. 57, 133–143. https://doi.org/10.1006/anbe.1998.0923[72] (1999).

CAS[73]  Article[74]  PubMed[75]  Google Scholar[76] 

22.

Gillespie, D. et al. PAMGUARD: Semiautomated, open source software for real-time acoustic detection and localization of cetaceans. J. Acoust. Soc. Am. 125, 2547–2547. https://doi.org/10.1121/1.4808713[77] (2009).

Article[78]  ADS[79]  Google Scholar[80] 

23.

Kaleidoscope Pro Analysis Software [Software]. (Wildlife Acoustics, Inc. https://www.wildlifeacoustics.com[81] (2020).

24.

Ruff, Z. J., Lesmeister, D. B., Duchac, L. S., Padmaraju, B. K. & Sullivan, C. M. Automated identification of avian vocalizations with deep convolutional neural networks. Remote Sens. Ecol. Conserv. 6, 79–92. https://doi.org/10.1002/rse2.125[82] (2020).

Article[83]  Google Scholar[84] 

25.

Coffey, K. R., Marx, R. G. & Neumaier, J. F. DeepSqueak: A deep learning-based system for detection and analysis of ultrasonic vocalizations. Neuropsychopharmacology 44, 859–868. https://doi.org/10.1038/s41386-018-0303-6[85] (2019).

Article[86]  PubMed[87]  PubMed Central[88]  Google Scholar[89] 

26.

Oikarinen, T. et al. Deep convolutional network for animal sound classification and source attribution using dual audio recordings. J. Acoust. Soc. Am. 145, 654–662. https://doi.org/10.1121/1.5087827[90] (2019).

Article[91]  PubMed[92]  PubMed Central[93]  ADS[94]  Google Scholar[95] 

27.

Pozzi, L., Gamba, M. & Giacoma, C. The use of artificial neural networks to classify primate vocalizations: A pilot study on black lemurs. Am. J. Primatol. 72, 337–348. https://doi.org/10.1002/ajp.20786[96] (2010).

Article[97]  PubMed[98]  Google Scholar[99] 

28.

Gamba, M. et al. Comparative analysis of the vocal repertoire of Eulemur: A dynamic time warping approach. Int. J. Primatol. 36, 894–910. https://doi.org/10.1007/s10764-015-9861-1[100] (2015).

Article[101]  Google Scholar[102] 

29.

Pozzi, L., Gamba, M. & Giacoma, C. In Leaping Ahead: Advances in Prosimian Biology. (ed Masters, J.) Ch. 34, 305–313 (Springer, 2013).

30.

Heinicke, S. et al. Assessing the performance of a semi-automated acoustic monitoring system for primates. Methods Ecol. Evol. 6, 753–763. https://doi.org/10.1111/2041-210x.12384[103] (2015).

Article[104]  Google Scholar[105] 

31.

Turesson, H. K., Ribeiro, S., Pereira, D. R., Papa, J. P. & de Albuquerque, V. H. C. Machine learning algorithms for automatic classification of marmoset vocalizations. PLoS One 11, e0163041. https://doi.org/10.1371/journal.pone.0163041[106] (2016).

CAS[107]  Article[108]  PubMed[109]  PubMed Central[110]  Google Scholar[111] 

32.

Bergler, C. et al. ORCA-SPOT: An automatic killer whale sound detection toolkit using deep learning. Sci. Rep. 9, 10997. https://doi.org/10.1038/s41598-019-47335-w[112] (2019).

CAS[113]  Article[114]  PubMed[115]  PubMed Central[116]  ADS[117]  Google Scholar[118] 

33.

Shiu, Y. et al. Deep neural networks for automated detection of marine mammal species. Sci. Rep. 10, 607. https://doi.org/10.1038/s41598-020-57549-y[119] (2020).

CAS[120]  Article[121]  PubMed[122]  PubMed Central[123]  ADS[124]  Google Scholar[125] 

34.

Zeppelzauer, M., Hensman, S. & Stoeger, A. S. Towards an automated acoustic detection system for free-ranging elephants. Bioacoustics 24, 13–29. https://doi.org/10.1080/09524622.2014.906321[126] (2015).

Article[127]  PubMed[128]  PubMed Central[129]  Google Scholar[130] 

35.

Venter, P. J. & Hanekom, J. J. Automatic detection of African elephant (Loxodonta africana) infrasonic vocalisations from recordings. Biosyst. Eng. 106, 286–294. https://doi.org/10.1016/j.biosystemseng.2010.04.001[131] (2010).

Article[132]  Google Scholar[133] 

36.

Mac Aodha, O. et al. Bat detective-Deep learning tools for bat acoustic signal detection. PLoS Comput. Biol. 14, e1005995. https://doi.org/10.1371/journal.pcbi.1005995[134] (2018).

CAS[135]  Article[136]  PubMed[137]  PubMed Central[138]  Google Scholar[139] 

37.

Henriquez, A. et al. An automatic acoustic bat identification system based on the audible spectrum. Expert Syst. Appl. 41, 5451–5465. https://doi.org/10.1016/j.eswa.2014.02.021[140] (2014).

Article[141]  Google Scholar[142] 

38.

Hoy, M. B. Alexa, Siri, Cortana, and more: An introduction to voice assistants. Med. Ref. Serv. Q. 37, 81–88. https://doi.org/10.1080/02763869.2018.1404391[143] (2018).

Article[144]  PubMed[145]  Google Scholar[146] 

39.

López, G., Quesada, L. & Guerrero, L. A. In Advances in Human Factors and Systems Interaction. AHFE 2017. Advances in Intelligent Systems and Computing Vol. 592 (ed. Nunes, I.) (Springer, 2018).

40.

Ren, S., He, K., Girshick, R. & Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39, 1137–1149. https://doi.org/10.1109/TPAMI.2016.2577031[147] (2017).

Article[148]  PubMed[149]  Google Scholar[150] 

41.

Barker, D. J., Herrera, C. & West, M. O. Automated detection of 50-kHz ultrasonic vocalizations using template matching in XBAT. J. Neurosci. Methods 236, 68–75. https://doi.org/10.1016/j.jneumeth.2014.08.007[151] (2014).

Article[152]  PubMed[153]  PubMed Central[154]  Google Scholar[155] 

42.

Zimmermann, E. In Leaping Ahead: Advances in Prosimian Biology (eds. Masters, J., Gamba, M., & Génin, F.) Ch. 32, 287–295 (Springer, 2013).

43.

Schopf, C., Schmidt, S. & Zimmermann, E. Moderate evidence for a Lombard effect in a phylogenetically basal primate. PeerJ 4, e2328. https://doi.org/10.7717/peerj.2328[156] (2016).

Article[157]  PubMed[158]  PubMed Central[159]  Google Scholar[160] 

44.

Niaussat, M. M. & Petter, J. J. Etude de la sensibilité auditive d’un lémurien malgache: Microcebus murinus (J.-F. Miller, 1777). Mammalia 44, 553–558. https://doi.org/10.1515/mamm.1980.44.4.553[161] (1980).

Article[162]  Google Scholar[163] 

45.

Hasiniaina, A. F. et al. Evolutionary significance of the variation in acoustic communication of a cryptic nocturnal primate radiation (Microcebus spp.). Ecol. Evol. 10, 3784–3797. https://doi.org/10.1002/ece3.6177[164] (2020).

Article[165]  PubMed[166]  PubMed Central[167]  Google Scholar[168] 

46.

Braune, P., Schmidt, S. & Zimmermann, E. Acoustic divergence in the communication of cryptic species of nocturnal primates (Microcebus ssp.). BMC Biol. 6, 19. https://doi.org/10.1186/1741-7007-6-19[169] (2008).

Article[170]  PubMed[171]  PubMed Central[172]  Google Scholar[173] 

47.

Leliveld, L. M. C., Scheumann, M. & Zimmermann, E. Acoustic correlates of individuality in the vocal repertoire of a nocturnal primate (Microcebus murinus). J. Acoust. Soc. Am. 129, 2278–2288. https://doi.org/10.1121/1.3559680[174] (2011).

Article[175]  PubMed[176]  ADS[177]  Google Scholar[178] 

48.

Scheumann, M., Zimmermann, E. & Deichsel, G. Context-specific calls signal infants’ needs in a strepsirrhine primate, the gray mouse lemur (Microcebus murinus). Dev. Psychobiol. 49, 708–718. https://doi.org/10.1002/dev.20234[179] (2007).

Article[180]  PubMed[181]  Google Scholar[182] 

49.

Zimmermann, E. In Handbook of Mammalian Vocalization: An Integrative Neuroscience Approach. (ed. Brudzynski, S. M.) 215–225 (Academic Press, 2010).

50.

Zimmermann, E. In Handbook of Ultrasonic Vocalization: A Window into the Emotional Brain vol. 25 (ed. Brudzynski, S. M.) 521–533 (Academic Press, 2018).

51.

Buesching, C. D., Heistermann, M., Hodges, J. K. & Zimmermann, E. Multimodal oestrus advertisement in a small nocturnal prosimian, Microcebus murinus. Folia Primatol. 69(1), 295–308. https://doi.org/10.1159/000052718[183] (1998).

Article[184]  Google Scholar[185] 

52.

Scheumann, M., Linn, S. & Zimmermann, E. Vocal greeting during mother–infant reunions in a nocturnal primate, the gray mouse lemur (Microcebus murinus). Sci. Rep. 7, 10321. https://doi.org/10.1038/s41598-017-10417-8[186] (2017).

CAS[187]  Article[188]  PubMed[189]  PubMed Central[190]  ADS[191]  Google Scholar[192] 

53.

Braune, P., Schmidt, S. & Zimmermann, E. Spacing and group coordination in a nocturnal primate, the golden brown mouse lemur (Microcebus ravelobensis): The role of olfactory and acoustic signals. Behav. Ecol. Sociobiol. 58, 587–596. https://doi.org/10.1007/s00265-005-0944-4[193] (2005).

Article[194]  Google Scholar[195] 

54.

Kessler, S. E., Scheumann, M., Nash, L. T. & Zimmermann, E. Paternal kin recognition in the high frequency/ultrasonic range in a solitary foraging mammal. BMC Ecol. 12, 26. https://doi.org/10.1186/1472-6785-12-26[196] (2012).

Article[197]  PubMed[198]  PubMed Central[199]  Google Scholar[200] 

55.

Zimmermann, E. & Hafen, T. G. Colony specificity in a social call of mouse lemurs (Microcebus ssp.). Am. J. Primatol. 54, 129–141. https://doi.org/10.1002/ajp.1018[201] (2001).

CAS[202]  Article[203]  PubMed[204]  Google Scholar[205] 

56.

Hafen, T., Neveu, H., Rumpler, Y., Wilden, I. & Zimmermann, E. Acoustically dimorphic advertisement calls separate morphologically and genetically homogenous populations of the grey mouse lemur (Microcebus murinus). Folia Primatol. 69, 342–356. https://doi.org/10.1159/000052723[206] (1998).

Article[207]  Google Scholar[208] 

57.

Zimmermann, E. & Lerch, C. The complex acoustic design of an advertisement call in male mouse lemurs (Microcebus murinus, Prosimii, Primates) and sources of its variation. Ethology 93, 211–224. https://doi.org/10.1111/j.1439-0310.1993.tb00990.x[209] (1993).

Article[210]  Google Scholar[211] 

58.

Zimmermann, E. Castration affects the emission of an ultrasonic vocalization in a nocturnal primate, the grey mouse lemur (Microcebus murinus). Physiol. Behav. 60, 693–697. https://doi.org/10.1016/0031-9384(96)81674-X[212] (1996).

CAS[213]  Article[214]  PubMed[215]  Google Scholar[216] 

59.

Keenan, S., Lemasson, A. & Zuberbühler, K. Graded or discrete? A quantitative analysis of Campbell’s monkey alarm calls. Anim. Behav. 85, 109–118. https://doi.org/10.1016/j.anbehav.2012.10.014[217] (2013).

Article[218]  Google Scholar[219] 

60.

Tallet, C. et al. Encoding of situations in the vocal repertoire of piglets (Sus scrofa): A comparison of discrete and graded classifications. PLoS One 8, e71841. https://doi.org/10.1371/journal.pone.0071841[220] (2013).

CAS[221]  Article[222]  PubMed[223]  PubMed Central[224]  ADS[225]  Google Scholar[226] 

61.

Hasiniaina, A. F. et al. High frequency/ultrasonic communication in a critically endangered nocturnal primate, Claire’s mouse lemur (Microcebus mamiratra). Am. J. Primatol. https://doi.org/10.1002/ajp.22866[227] (2018).

Article[228]  PubMed[229]  Google Scholar[230] 

62.

Boersma, P. Praat, a system for doing phonetics by computer. Glot Int. 5, 341–345 (2001).

Google Scholar[231] 

63.

Owren, M. J. GSU Praat Tools: Scripts for modifying and analyzing sounds using Praat acoustics software. Behav. Res. Methods 40, 822–829. https://doi.org/10.3758/Brm.40.3.822[232] (2008).

Article[233]  PubMed[234]  Google Scholar[235] 

64.

R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).

65.

Fränti, P. & Sieranoja, S. How much can k-means be improved by using better initialization and repeats?. Pattern Recogn. 93, 95–112. https://doi.org/10.1016/j.patcog.2019.04.014[236] (2019).

Article[237]  ADS[238]  Google Scholar[239] 

66.

Patterson, J. & Gibson, A. Deep Learning: A Practitioner’s Approach. (O’Reilly Media, Inc., 2017).

67.

Field, A. Discovering Statistics Using IBM SPSS Statistics (Englisch). 3rd ed. (Sage Publication, 2009).

68.

Clink, D. J., Tasirin, J. S. & Klinck, H. Vocal individuality and rhythm in male and female duet contributions of a nonhuman primate. Curr. Zool. 66, 173–186. https://doi.org/10.1093/cz/zoz035[240] (2019).

Article[241]  PubMed[242]  PubMed Central[243]  Google Scholar[244] 

69.

Romero-Mujalli, D., Tárano, Z., Cobarrubia, S. & Barreto, G. Caracterización de silbidos de Tursiops truncatus (Cetacea: Delphinidae) y su asociación con el comportamiento en superficie. Revista Argentina de Ciencias del Comportamiento 6, 15–29. https://doi.org/10.32348/1852.4206.v6.n1.6362[245] (2014).

Article[246]  Google Scholar[247] 

70.

Papale, E., Gamba, M., Perez-Gil, M., Martin, V. M. & Giacoma, C. Dolphins adjust species-specific frequency parameters to compensate for increasing background noise. PLoS One 10, e0121711. https://doi.org/10.1371/journal.pone.0121711[248] (2015).

CAS[249]  Article[250]  PubMed[251]  PubMed Central[252]  Google Scholar[253] 

71.

García, N. C., Barreira, A. S., Kopuchian, C. & Tubaro, P. L. Intraspecific and interspecific vocal variation in three Neotropical cardinalids (Passeriformes: Fringillidae) and its relationship with body mass. Emu 114, 129–136. https://doi.org/10.1071/MU13010[254] (2014).

Article[255]  Google Scholar[256] 

72.

Lostanlen, V., Salamon, J., Farnsworth, A., Kelling, S. & Bello, J. P. Robust sound event detection in bioacoustic sensor networks. PLoS One 14, e0214168. https://doi.org/10.1371/journal.pone.0214168[257] (2019).

CAS[258]  Article[259]  PubMed[260]  PubMed Central[261]  Google Scholar[262] 

73.

Albin, A. PraatR: An architecture for controlling the phonetics software “Praat” with the R programming language. J. Acoust. Soc. Am. 135, 2198. https://doi.org/10.1121/1.4877175[263] (2014).

Article[264]  ADS[265]  Google Scholar[266] 

References

  1. ^ https://doi.org/10.1111/jav.01447 (doi.org)
  2. ^ Article (doi.org)
  3. ^ Google Scholar (scholar.google.com)
  4. ^ https://doi.org/10.1121/1.4977990 (doi.org)
  5. ^ Article (doi.org)
  6. ^ PubMed (www.ncbi.nlm.nih.gov)
  7. ^ PubMed Central (www.ncbi.nlm.nih.gov)
  8. ^ ADS (adsabs.harvard.edu)
  9. ^ Google Scholar (scholar.google.com)
  10. ^ https://doi.org/10.1121/1.2743157 (doi.org)
  11. ^ Article (doi.org)
  12. ^ PubMed (www.ncbi.nlm.nih.gov)
  13. ^ ADS (adsabs.harvard.edu)
  14. ^ Google Scholar (scholar.google.com)
  15. ^ https://doi.org/10.1016/j.neuron.2017.04.005 (doi.org)
  16. ^ CAS (www.nature.com)
  17. ^ Article (doi.org)
  18. ^ PubMed (www.ncbi.nlm.nih.gov)
  19. ^ PubMed Central (www.ncbi.nlm.nih.gov)
  20. ^ Google Scholar (scholar.google.com)
  21. ^ https://doi.org/10.1016/j.jneumeth.2018.08.015 (doi.org)
  22. ^ Article (doi.org)
  23. ^ PubMed (www.ncbi.nlm.nih.gov)
  24. ^ Google Scholar (scholar.google.com)
  25. ^ https://doi.org/10.1098/rsif.2019.0225 (doi.org)
  26. ^ Article (doi.org)
  27. ^ PubMed (www.ncbi.nlm.nih.gov)
  28. ^ PubMed Central (www.ncbi.nlm.nih.gov)
  29. ^ Google Scholar (scholar.google.com)
  30. ^ https://doi.org/10.1578/AM.32.3.2006.325 (doi.org)
  31. ^ Article (doi.org)
  32. ^ Google Scholar (scholar.google.com)
  33. ^ https://doi.org/10.1016/j.compag.2011.01.009 (doi.org)
  34. ^ Article (doi.org)
  35. ^ Google Scholar (scholar.google.com)
  36. ^ https://doi.org/10.3168/jds.S0022-0302(07)72621-8 (doi.org)
  37. ^ Article (doi.org)
  38. ^ PubMed (www.ncbi.nlm.nih.gov)
  39. ^ Google Scholar (scholar.google.com)
  40. ^ https://doi.org/10.1038/s41598-020-60441-4 (doi.org)
  41. ^ CAS (www.nature.com)
  42. ^ Article (doi.org)
  43. ^ PubMed (www.ncbi.nlm.nih.gov)
  44. ^ PubMed Central (www.ncbi.nlm.nih.gov)
  45. ^ ADS (adsabs.harvard.edu)
  46. ^ Google Scholar (scholar.google.com)
  47. ^ Google Scholar (scholar.google.com)
  48. ^ https://doi.org/10.1006/jaer.2001.0719 (doi.org)
  49. ^ Article (doi.org)
  50. ^ Google Scholar (scholar.google.com)
  51. ^ https://doi.org/10.1016/j.patrec.2009.09.014 (doi.org)
  52. ^ Article (doi.org)
  53. ^ ADS (adsabs.harvard.edu)
  54. ^ Google Scholar (scholar.google.com)
  55. ^ https://doi.org/10.1111/brv.12001 (doi.org)
  56. ^ Article (doi.org)
  57. ^ PubMed (www.ncbi.nlm.nih.gov)
  58. ^ Google Scholar (scholar.google.com)
  59. ^ https://doi.org/10.1111/2041-210x.12291 (doi.org)
  60. ^ Article (doi.org)
  61. ^ Google Scholar (scholar.google.com)
  62. ^ https://doi.org/10.1111/2041-210x.12730 (doi.org)
  63. ^ Article (doi.org)
  64. ^ Google Scholar (scholar.google.com)
  65. ^ https://doi.org/10.3389/fmars.2019.00500 (doi.org)
  66. ^ Article (doi.org)
  67. ^ Google Scholar (scholar.google.com)
  68. ^ https://doi.org/10.1080/09524622.2018.1463293 (doi.org)
  69. ^ Article (doi.org)
  70. ^ Google Scholar (scholar.google.com)
  71. ^ Google Scholar (scholar.google.com)
  72. ^ https://doi.org/10.1006/anbe.1998.0923 (doi.org)
  73. ^ CAS (www.nature.com)
  74. ^ Article (doi.org)
  75. ^ PubMed (www.ncbi.nlm.nih.gov)
  76. ^ Google Scholar (scholar.google.com)
  77. ^ https://doi.org/10.1121/1.4808713 (doi.org)
  78. ^ Article (doi.org)
  79. ^ ADS (adsabs.harvard.edu)
  80. ^ Google Scholar (scholar.google.com)
  81. ^ https://www.wildlifeacoustics.com (www.wildlifeacoustics.com)
  82. ^ https://doi.org/10.1002/rse2.125 (doi.org)
  83. ^ Article (doi.org)
  84. ^ Google Scholar (scholar.google.com)
  85. ^ https://doi.org/10.1038/s41386-018-0303-6 (doi.org)
  86. ^ Article (doi.org)
  87. ^ PubMed (www.ncbi.nlm.nih.gov)
  88. ^ PubMed Central (www.ncbi.nlm.nih.gov)
  89. ^ Google Scholar (scholar.google.com)
  90. ^ https://doi.org/10.1121/1.5087827 (doi.org)
  91. ^ Article (doi.org)
  92. ^ PubMed (www.ncbi.nlm.nih.gov)
  93. ^ PubMed Central (www.ncbi.nlm.nih.gov)
  94. ^ ADS (adsabs.harvard.edu)
  95. ^ Google Scholar (scholar.google.com)
  96. ^ https://doi.org/10.1002/ajp.20786 (doi.org)
  97. ^ Article (doi.org)
  98. ^ PubMed (www.ncbi.nlm.nih.gov)
  99. ^ Google Scholar (scholar.google.com)
  100. ^ https://doi.org/10.1007/s10764-015-9861-1 (doi.org)
  101. ^ Article (doi.org)
  102. ^ Google Scholar (scholar.google.com)
  103. ^ https://doi.org/10.1111/2041-210x.12384 (doi.org)
  104. ^ Article (doi.org)
  105. ^ Google Scholar (scholar.google.com)
  106. ^ https://doi.org/10.1371/journal.pone.0163041 (doi.org)
  107. ^ CAS (www.nature.com)
  108. ^ Article (doi.org)
  109. ^ PubMed (www.ncbi.nlm.nih.gov)
  110. ^ PubMed Central (www.ncbi.nlm.nih.gov)
  111. ^ Google Scholar (scholar.google.com)
  112. ^ https://doi.org/10.1038/s41598-019-47335-w (doi.org)
  113. ^ CAS (www.nature.com)
  114. ^ Article (doi.org)
  115. ^ PubMed (www.ncbi.nlm.nih.gov)
  116. ^ PubMed Central (www.ncbi.nlm.nih.gov)
  117. ^ ADS (adsabs.harvard.edu)
  118. ^ Google Scholar (scholar.google.com)
  119. ^ https://doi.org/10.1038/s41598-020-57549-y (doi.org)
  120. ^ CAS (www.nature.com)
  121. ^ Article (doi.org)
  122. ^ PubMed (www.ncbi.nlm.nih.gov)
  123. ^ PubMed Central (www.ncbi.nlm.nih.gov)
  124. ^ ADS (adsabs.harvard.edu)
  125. ^ Google Scholar (scholar.google.com)
  126. ^ https://doi.org/10.1080/09524622.2014.906321 (doi.org)
  127. ^ Article (doi.org)
  128. ^ PubMed (www.ncbi.nlm.nih.gov)
  129. ^ PubMed Central (www.ncbi.nlm.nih.gov)
  130. ^ Google Scholar (scholar.google.com)
  131. ^ https://doi.org/10.1016/j.biosystemseng.2010.04.001 (doi.org)
  132. ^ Article (doi.org)
  133. ^ Google Scholar (scholar.google.com)
  134. ^ https://doi.org/10.1371/journal.pcbi.1005995 (doi.org)
  135. ^ CAS (www.nature.com)
  136. ^ Article (doi.org)
  137. ^ PubMed (www.ncbi.nlm.nih.gov)
  138. ^ PubMed Central (www.ncbi.nlm.nih.gov)
  139. ^ Google Scholar (scholar.google.com)
  140. ^ https://doi.org/10.1016/j.eswa.2014.02.021 (doi.org)
  141. ^ Article (doi.org)
  142. ^ Google Scholar (scholar.google.com)
  143. ^ https://doi.org/10.1080/02763869.2018.1404391 (doi.org)
  144. ^ Article (doi.org)
  145. ^ PubMed (www.ncbi.nlm.nih.gov)
  146. ^ Google Scholar (scholar.google.com)
  147. ^ https://doi.org/10.1109/TPAMI.2016.2577031 (doi.org)
  148. ^ Article (doi.org)
  149. ^ PubMed (www.ncbi.nlm.nih.gov)
  150. ^ Google Scholar (scholar.google.com)
  151. ^ https://doi.org/10.1016/j.jneumeth.2014.08.007 (doi.org)
  152. ^ Article (doi.org)
  153. ^ PubMed (www.ncbi.nlm.nih.gov)
  154. ^ PubMed Central (www.ncbi.nlm.nih.gov)
  155. ^ Google Scholar (scholar.google.com)
  156. ^ https://doi.org/10.7717/peerj.2328 (doi.org)
  157. ^ Article (doi.org)
  158. ^ PubMed (www.ncbi.nlm.nih.gov)
  159. ^ PubMed Central (www.ncbi.nlm.nih.gov)
  160. ^ Google Scholar (scholar.google.com)
  161. ^ https://doi.org/10.1515/mamm.1980.44.4.553 (doi.org)
  162. ^ Article (doi.org)
  163. ^ Google Scholar (scholar.google.com)
  164. ^ https://doi.org/10.1002/ece3.6177 (doi.org)
  165. ^ Article (doi.org)
  166. ^ PubMed (www.ncbi.nlm.nih.gov)
  167. ^ PubMed Central (www.ncbi.nlm.nih.gov)
  168. ^ Google Scholar (scholar.google.com)
  169. ^ https://doi.org/10.1186/1741-7007-6-19 (doi.org)
  170. ^ Article (doi.org)
  171. ^ PubMed (www.ncbi.nlm.nih.gov)
  172. ^ PubMed Central (www.ncbi.nlm.nih.gov)
  173. ^ Google Scholar (scholar.google.com)
  174. ^ https://doi.org/10.1121/1.3559680 (doi.org)
  175. ^ Article (doi.org)
  176. ^ PubMed (www.ncbi.nlm.nih.gov)
  177. ^ ADS (adsabs.harvard.edu)
  178. ^ Google Scholar (scholar.google.com)
  179. ^ https://doi.org/10.1002/dev.20234 (doi.org)
  180. ^ Article (doi.org)
  181. ^ PubMed (www.ncbi.nlm.nih.gov)
  182. ^ Google Scholar (scholar.google.com)
  183. ^ https://doi.org/10.1159/000052718 (doi.org)
  184. ^ Article (doi.org)
  185. ^ Google Scholar (scholar.google.com)
  186. ^ https://doi.org/10.1038/s41598-017-10417-8 (doi.org)
  187. ^ CAS (www.nature.com)
  188. ^ Article (doi.org)
  189. ^ PubMed (www.ncbi.nlm.nih.gov)
  190. ^ PubMed Central (www.ncbi.nlm.nih.gov)
  191. ^ ADS (adsabs.harvard.edu)
  192. ^ Google Scholar (scholar.google.com)
  193. ^ https://doi.org/10.1007/s00265-005-0944-4 (doi.org)
  194. ^ Article (doi.org)
  195. ^ Google Scholar (scholar.google.com)
  196. ^ https://doi.org/10.1186/1472-6785-12-26 (doi.org)
  197. ^ Article (doi.org)
  198. ^ PubMed (www.ncbi.nlm.nih.gov)
  199. ^ PubMed Central (www.ncbi.nlm.nih.gov)
  200. ^ Google Scholar (scholar.google.com)
  201. ^ https://doi.org/10.1002/ajp.1018 (doi.org)
  202. ^ CAS (www.nature.com)
  203. ^ Article (doi.org)
  204. ^ PubMed (www.ncbi.nlm.nih.gov)
  205. ^ Google Scholar (scholar.google.com)
  206. ^ https://doi.org/10.1159/000052723 (doi.org)
  207. ^ Article (doi.org)
  208. ^ Google Scholar (scholar.google.com)
  209. ^ https://doi.org/10.1111/j.1439-0310.1993.tb00990.x (doi.org)
  210. ^ Article (doi.org)
  211. ^ Google Scholar (scholar.google.com)
  212. ^ https://doi.org/10.1016/0031-9384(96)81674-X (doi.org)
  213. ^ CAS (www.nature.com)
  214. ^ Article (doi.org)
  215. ^ PubMed (www.ncbi.nlm.nih.gov)
  216. ^ Google Scholar (scholar.google.com)
  217. ^ https://doi.org/10.1016/j.anbehav.2012.10.014 (doi.org)
  218. ^ Article (doi.org)
  219. ^ Google Scholar (scholar.google.com)
  220. ^ https://doi.org/10.1371/journal.pone.0071841 (doi.org)
  221. ^ CAS (www.nature.com)
  222. ^ Article (doi.org)
  223. ^ PubMed (www.ncbi.nlm.nih.gov)
  224. ^ PubMed Central (www.ncbi.nlm.nih.gov)
  225. ^ ADS (adsabs.harvard.edu)
  226. ^ Google Scholar (scholar.google.com)
  227. ^ https://doi.org/10.1002/ajp.22866 (doi.org)
  228. ^ Article (doi.org)
  229. ^ PubMed (www.ncbi.nlm.nih.gov)
  230. ^ Google Scholar (scholar.google.com)
  231. ^ Google Scholar (scholar.google.com)
  232. ^ https://doi.org/10.3758/Brm.40.3.822 (doi.org)
  233. ^ Article (doi.org)
  234. ^ PubMed (www.ncbi.nlm.nih.gov)
  235. ^ Google Scholar (scholar.google.com)
  236. ^ https://doi.org/10.1016/j.patcog.2019.04.014 (doi.org)
  237. ^ Article (doi.org)
  238. ^ ADS (adsabs.harvard.edu)
  239. ^ Google Scholar (scholar.google.com)
  240. ^ https://doi.org/10.1093/cz/zoz035 (doi.org)
  241. ^ Article (doi.org)
  242. ^ PubMed (www.ncbi.nlm.nih.gov)
  243. ^ PubMed Central (www.ncbi.nlm.nih.gov)
  244. ^ Google Scholar (scholar.google.com)
  245. ^ https://doi.org/10.32348/1852.4206.v6.n1.6362 (doi.org)
  246. ^ Article (doi.org)
  247. ^ Google Scholar (scholar.google.com)
  248. ^ https://doi.org/10.1371/journal.pone.0121711 (doi.org)
  249. ^ CAS (www.nature.com)
  250. ^ Article (doi.org)
  251. ^ PubMed (www.ncbi.nlm.nih.gov)
  252. ^ PubMed Central (www.ncbi.nlm.nih.gov)
  253. ^ Google Scholar (scholar.google.com)
  254. ^ https://doi.org/10.1071/MU13010 (doi.org)
  255. ^ Article (doi.org)
  256. ^ Google Scholar (scholar.google.com)
  257. ^ https://doi.org/10.1371/journal.pone.0214168 (doi.org)
  258. ^ CAS (www.nature.com)
  259. ^ Article (doi.org)
  260. ^ PubMed (www.ncbi.nlm.nih.gov)
  261. ^ PubMed Central (www.ncbi.nlm.nih.gov)
  262. ^ Google Scholar (scholar.google.com)
  263. ^ https://doi.org/10.1121/1.4877175 (doi.org)
  264. ^ Article (doi.org)
  265. ^ ADS (adsabs.harvard.edu)
  266. ^ Google Scholar (scholar.google.com)
Advertisement

Total